3
用求根公式法解方程(结果保留根号形式):
a) $$ 2x^2 + 4x - 1 = 0 $$
b) $$ 5x^2 - 3x - 2 = 0 $$
c) $$ x^2 - 8x + 2 = 0 $$
答案:
a) $$a=2, b=4, c=-1$$,$$x = \frac{-4 \pm \sqrt{16 + 8}}{4} = \frac{-4 \pm \sqrt{24}}{4} = \frac{-4 \pm 2\sqrt{6}}{4} = \frac{-2 \pm \sqrt{6}}{2}$$
b) $$a=5, b=-3, c=-2$$,$$x = \frac{3 \pm \sqrt{9 + 40}}{10} = \frac{3 \pm \sqrt{49}}{10} = \frac{3 \pm 7}{10}$$,$$x = 1$$ 或 $$x = -\frac{2}{5}$$
c) $$a=1, b=-8, c=2$$,$$x = \frac{8 \pm \sqrt{64 - 8}}{2} = \frac{8 \pm \sqrt{56}}{2} = \frac{8 \pm 2\sqrt{14}}{2} = 4 \pm \sqrt{14}$$
4
选择合适的方法解方程:
a) $$ x^2 - 10x + 21 = 0 $$
b) $$ (x + 4)^2 = 5 $$
c) $$ 4x^2 + 7x + 1 = 0 $$
d) $$ 3x^2 = 2x + 5 $$(提示:先整理为标准形式)
答案:
a) 因式分解:$$(x - 3)(x - 7) = 0$$,$$x = 3$$ 或 $$x = 7$$
b) 直接开平方:$$x + 4 = \pm \sqrt{5}$$,$$x = -4 + \sqrt{5}$$ 或 $$x = -4 - \sqrt{5}$$
c) 求根公式:$$a=4, b=7, c=1$$,$$x = \frac{-7 \pm \sqrt{49 - 16}}{8} = \frac{-7 \pm \sqrt{33}}{8}$$
d) 先整理:$$3x^2 - 2x - 5 = 0$$,求根公式:$$a=3, b=-2, c=-5$$,$$x = \frac{2 \pm \sqrt{4 + 60}}{6} = \frac{2 \pm \sqrt{64}}{6} = \frac{2 \pm 8}{6}$$,$$x = \frac{10}{6} = \frac{5}{3}$$ 或 $$x = \frac{-6}{6} = -1$$